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A Note on the Second Order Separate Source Coding Theorem for

Sources with Side Information

Ryo NOMURA *

Abstract— The source coding theorem reveals the mini-
mum achievable code length under the condition that the
error probability is smaller than or equal to some small
constant. For the single source coding problem, the source
coding theorem was shown for general sources. Further-
more, there is a study to evaluate the achievable code length
more precisely for the restricted class of sources by using
the asymptotic normality. In this study, we consider the
problem that there exists a side information. This setting
is one kind of correlated sources coding problem and show
the coding theorem more precisely than the previous result
by using the asymptotic normality.
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1 Introduction

The source coding theorem is one of the most ba-
sic result in communication systems. It reveals the
minimum achievable code length under the condition
that the error probability is smaller than or equal to
€ (0 < e < 1)[1][2]. In single-user communication sys-
tems, Han et al. and Steinberg et al. shows the source
coding theorem for general sources[3]|[4]. The class of
general sources is quite large and their result can be ap-
plied for various sources. On the other hand, there are
several researches that shows the minimum achievable
code length more precisely for the restricted class of
sources[5, 6, 7]. These results are based on the asymp-
totic normality of self-information.

In multi-user communication system there are var-
ious types of source coding problems[1][8, 9, 10, 11, 12,
13]. The correlated source coding problem is a typi-
cal source coding problem in multi-user communication
system. In the correlated source coding problem, there
exists several problem settings according to the type
of encoder and the decoder. The Slepian-Wolf type
problem, Wyner type problem and the source coding
problem with side information are included in the class
of the correlated source coding problem.

Miyake et al. showed the source coding theorem for
Slepian-Wolf type source coding problem and Wyner
type source coding problem under the condition that
the error probability goes to 0 asymptotically [8]. Han
showed the coding theorem for Slepian-Wolf type prob-
lem in the case that we allow the small error probabil-
ity. Please note that their results are very important,
since they are valid for general correlated sources. How-
ever there was no result to show the coding theorem by
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using the asymptotic normality for correlated sources.

In this study, we consider the case that the self-
information of correlated sources has an asymptotic
normality and show the coding theorem for the sources
with side information more precisely than the previ-
ous result. The analysis is based upon the asymptotic
normality.

2 Preliminaries
2.1 Correlated Sources

Let A" and A3 be alphabets of correlated sources,
where n € N = {1,2,---}. Let

(X1, X2) = {(XT, X3) }nZ0,
denote a general correlated sources where
(X7, X3) = (X11, Xo1), (Xi2, Xa2), -+, (X, Xon),

be random variables emitted from the source and xx =
Tp1,Tk2, " ,Tkn be a realization of random variable
X}7. The probability distribution of (x1,x2) is denoted
by Pxrxp (x1,%x2). Please note that each of sources
X} is general correlated sources. If we assume that
correlated sources is stationary memoryless correlated
sources then it holds that

n
Pxnxp(x1,%x2) = HPX1X2 (T14, T2i).
i=1

2.2 Problem Settings

In this study, we consider the case that we try to
communicate x; by using the side information x5. The
fixed-length codes for the source with side information
are characterized by a encoder (b%l ) and a decoder U
The encoder is a mapping such as ¢>£}) AT - M,
where

Mn:{172a 7Mn}7

denote the codes. The decoder is a mapping defined as
Un 1 My x A3 — A, Please note that the encoder
¢$}) does not know the sequence x,. This setting is
called separate coding.

The performance of fixed-length code is evaluated
by the error probability and the code length. The
code length is given by log M,,'.The error probability
is given by

€n = PI{X? e wn(¢511)(X{L)7X£L)}

We call the a pair of the encoder (b%l) and the de-
coder 1,, with the error probability €, an (n, M,,€,)

I The base of logarithm is taken by e.



code. Then we are interested that how the code length
can be short under the condition that the error proba-
bility is smaller than or equal to € (0 < e < 1).
Definition 2.1 The rate R is called an e-achievable
rate if there exists an (n, My, €,) code satisfying

1
limsup — log M,, < R,
n

n—oo
limsupe, <e.
n—oo
We consider the infimum of e-achievable rate as follows.
Definition 2.2

R(e|X1) = inf{R1|Ry is e-achievable rate }.

The above quantities was not shown directly. How-
ever, for general correlated sources, Miyake et al. showed
the achievable rate region for Slepian-Wolf type prob-
lem and Wyner type problem[8] and Han showed the e-
achievable rate region for Slepian-Wolf type problem|[2].
Since settings in their results includes the setting de-
fined in this study, we can derive R(¢|X;) immediately
from their results.

2.3 Generalization of Achievability

Second order source coding theorems give us the
precise achievable code length. Kontyiannis showed
the second order fixed-to-variable source coding theo-
rem for stationary ergodic sources[5]. Hayashi showed
the second order fixed-length source coding theorem
for general sources[6]. Furthermore for an i.i.d. source
his results can be described by using the asymptotic
normality.

Their results implies that for restricted source class,
such as an stationary memoryless source, we can obtain
the achievable code length more precisely.

In this study, we shall show the second order coding
theorem for the source with side information.

The infimum of e-achievable rate denotes the short-
est code length under the condition that error proba-
bility is smaller than or equal to e. In this subsection
we define the achievability to evaluate the code length
more precisely. In this study, we consider the following
achievability.

Definition 2.3 A sequence {n,}52, is called an
e-achievable sequence if there exists an (n, My, €,) code
satisfying

1
lim sup ( log M,, —n, | <0,
n—oo \/ﬁ

limsupe, <e.
n—oo
Then we are interested in the condition that {n,}%2
is the e-achievable sequence.

Please note that the difference between the previ-
ous achievability condition and our achievability condi-
tion is the difference of conditions for the code length
log M,,. Actually if we use the e-achievable rate, then
o(n) term in the condition is neglected. Instead, if we
use our definition, we can evaluate the condition of e-
achievability more precisely.

Remark 2.1 Assuming that n, = v/nR for each n =
1,2,--- and we divide both sides by v/n, then the con-
dition in our definition coincides with the condition in
Def. 2.1. So our achievability is a generalization of the
Previous. ]

3 Necessary and Sufficient Condition for

e-Achievable Sequence

The infimum of e-achievable rate is considered as
the necessary and sufficient condition for e-achievable
rate. In this section we show the necessary and suf-
ficient condition that {n,}52; is the e-achievable se-
quence.

At first we show two lemmas that have important
roles in our result.

Lemma 3.1 Let M, be an arbitrarily given positive
integer and {a, }52 1 be a sequence of an arbitrary num-
ber satisfying a; > 0 (Vi = 1,2,---). Then, for all
n=1,2,--- there exists an (n, M,,€,) code that satis-

fies

n 1
€, < Pr {anPXfX;(X1 |1X3) < M} +a,. (1)

n

(Proof) At first, we shall define the encoder and the
decoder. We use the random coding technique.

Encoder For each 27 € A", we generate i € M,
randomly subject to the uniform distribution and

define (b%l)(xl) = 1.

Decoder After receiving i, the decoder v : M, X
X3 — X' decodes x; if there exists a unique x;
such that ¢£Ll)(x1) =1 and (x1,X2) € B, where

{(xix0) € a7 x

1
anPX“X;(xﬂxQ) > M} .

If there exists no such ¢ or more than one, the
error is occurred.

We shall evaluate the above encoder and decoder. Let
the event E,, as

{(x1,%x2) € X" x X |3x]| # %1,
o1 (xh) = 61 (x1), (x4, %2) € B |-

Then the error probability is given by

en = Pr{XI'X} € E,U(X" X})¢ B,}
< Pr{X!'X} € E,} +Pr{(X},X}) ¢ B,}.(2)

We shall evaluate the first term of the right hand side



(RHS) of (2) as follows.

Pr{X!X} € E,}

- ¥

(Xl,XQ)EXIn XXZW

> Pr{olx) = o x)}

X} #X1,(x],%2)€Bn
(x1,%x2)EX] XX
>
, - M,
X #X1 ,(Xl 7x2)EBn

Z Pxrxp(x1,X2)

(X1 ,Xz)EX{L XX;

Pxr xp(x1,X2)

Pxrxp(x1,X2)

IN

1
2.

x,(x],%x2)€EBn

where the second equality holds since we use the ran-
dom coding. Furthermore set S, (x2) as follows

def

Sn(x2) = {x) € A7'|(x,%2) € Bn}.

Then we have

Pr{X"XD € E,}

D>

(x1,%2)EX XX

1
Pypxp(xixa) ) e
x],(x},x2)EBR

1
= Z Pxpxp(x1,%2) [Sn(x2)] 7 (3)

M,
(x1,%2)EX XX n

From the definition of B, for (x},x2) € By, we have

Pxn xn (X x2) > .
X7 xp (X1[x2) o .

Thus we have

[Sn(x2)]

1> ) Pxpixp (i) > a M.

X1 €8n (x2)
Hence we obtain
|Sn(x2)| < anM,y,.
Substituting the above inequality into (3) we have

Pr{X!X} € E,}

S

(x17x2)€X1“’ X X3

Pxrxp(x1,X2)an < ay.

Substituting the above inequality into (2), we obtain

en < an+Pr{(X7, X3) ¢ Bn}

1
= Pr{anPXI‘\X;(X1|X2) S m},

where the last equality is derived from the definition of
B,,. Therefore we deduce the lemma. O

Lemma 3.2 For any (n, M, €,) code, it holds that

an
foralln=1,2,---, where {a,}52, is a sequence of an
arbitrary number satisfying a; > 0 (Vi =1,2,---).
(Proof) We shall define the following sets.

Cn
def n N an
D,
ef
del {(x1,xz)€2\,’{‘x/‘\f2" ¢n(¢$})<xl)’x2>le }7
and

Ch(x2) & {x;1 € X |(x1,%2) € Cp },

for each x5. Then we have

n

= Z Pxnxp(x1,X%2)

(x1,x2)€C,

= )

(x1,x2)€C,NDy,

>

(Xl ,X2)€Cn f—‘IDTCL

n n an
Pr {PXILIX;(X]- |X2) S M}

Pxnxp(x1,%2)

Pxnxp(x1,%2)

< Z Pxnxp(x1,X%2)
(xl,xg)ECnﬂDn
+ Z Pxnxp(x1,X2)
(x1,%2)& D,
= > Pxpxp(x1,%2) + €,
(x17x2)ecnnDn
< Z Pxnxp (X1[x2) Pxp (X2) + €5

(x1,x2)€C,

= Z Z Py xp(x1]x2) Pxp (x2) + €n

x2€AX] x1€Cy (x2)

= 2 Pqlx)

x2€X]

Z PX{l‘X’zﬂ(X1|X2)+€n
x1€Ch (x2)

On the other hand for V(x1,x3) € Cy, it holds that

an
Py xp(x1]x2) < T
Thus we have

n n an
Pr {PXIL|X;L(X1 |X2) S M}

< Z PX; (Xg) Z % + €n
X2 €AY n

x1€Cy (x2)

3" Py (x2) |Co(x2)| ~2 + €.

Xo EX;"

IA



Here, noting that |Cy,(x2)| < M,, we obtain

n n an
Pr {PXILX; (X7 X3 < }

=L
< Z PX;L(XQ)an+En =a, + €,.
x2 €A
Therefore we deduce the lemma. O

Please note that these lemmas are valid for general
correlated sources.

We assume that the following condition holds for
correlated sources.
Assumption 3.1 The conditional self-information has
an asymptotic normality, that is

—log Pxnixn (X7 XY) — H(XT| XY
lim Pr g XI\XZ( 11X3) (X7 2)§

no(X1]Xz)?

/U 1 [ 22} d

= ——=exp |——| dz,

—oo V2T P 2

holds where H(X1'|X%) = E[—log W] denotes
1 2

the conditional entropy of the source and o(X1|Xz)?
denotes the variance of the random variable
—log Pxn|xp (X7'|X3') that is,

1 1
o(X11X2)2 % lim ~Var log .
e Pxpixp (XT1X3)

We also assume that o(X;]|Xz)? exists and

0< U(X1|X2)2 < 00,

holds. This holds for the case that |X;| < co and |Xa| <
oo holds.

Please note that the asymptotic normality of con-
ditional self-information holds for the stationary mem-
oryless correlated sources.

By using the above lemmas and the asymptotic nor-
mality, we obtain the necessary and sufficient condition
for the e-achievable sequence. The following theorem
shows the condition in the case that 0 < € < 1 holds.
Theorem 3.1 Under Assumption 3.1, given 0 < € <
1, the necessary and sufficient condition of e-achievable
sequence for sources with side information is as follows

H(XT|X3)

lim inf (nn —
vn

n—oo

)>T KR (1)

where T satisfies

€= ——exp |—=| dy.
. o p 2 Y
(Proof) The proof consists of two parts. The first
part is that any {n, }52 ; satisfying (4) is an e-achievable
sequence and the second part is that if {n,}52 is the
e-achievable sequence, then (4) holds.
At first we shall show the first part, that is, if (4)
holds then {7, }22, is a e-achievable sequence.

From Lemma 3.1, for all n = 1,2,--- there exists

an (n, M, €,) code satisfying

1
€, < Pr {anPX{LX; (XIL|X£Z) < M} + an. (5)

n

N
Then set a,, = e~ ®e= and substituting it into (5), there
exists an (n, M, €,) code satisfying

_/n "l n 1 @
o = pee B rg i < )
1 1 1
< Pr¢—log o = —— log M,
{\/ﬁ PXl"'IX;L (X1 |X2) \/ﬁ
1 N
— ~To n 6
10gn}+e ‘ (6)

Here, we consider {n, }22 ; satisfying (4) and define

M, = eV,

Then (6) guarantees that, there exists an (n, My, €,,)
code satisfying

< P ! 1 1 > L
€n = r = Og n ny = nn - 1
vn PXI"\X;(X1 1 X3) logn
e T, (7)

On the other hand from (4) for any small v > 0 it holds
that

> H(‘)?AX?) + T (X X0)2 — v,
n

for sufficiently large n. Thus the first term of the right
hand side(RHS) of (7) is evaluated as follows.

Pr Llog 1 > b

1 1 H(XT[X3)
< Pr{ ——=log — 2
{ v Pxpixp (XTX3) vn
1

“V‘T\/ O'(X1|X2)2 —V — logn}

< Pr —Pxn xp (XTX3) — H(XTXY)
TLO'(X1|X2)2
v 1

B o(X1]X2)?  /o(X1]X2)?logn

<

- —Pxpixp (XT7'1X3) — H(XT|X3)
nJ(X1|X2)2

ST v
o(X1]X2)?

for sufficiently large n, since

v 1
> )
\/U(X1|X2)2 \/J(Xl\XQ)Zlogn




holds for sufficiently large n. Here, we denote v/ =
\/ﬁ for simplicity. Then from Assumption 3.1

for V6 > 0 there exists Ny such that for Vn > Ny it
holds that

—Pxn xn (X7 XY) — H(XT| XY
oy { P OIX9) — HOGIXG)
nJ(X1|X2)2

</OO L exp [yT dy+9¢
T2 V21 2
-, el
T 1 y?
+ </I'721/’ NG exp [—2} dy + 4. (8)

Please note that from the property of continuity of nor-
mal distribution, the second term of the RHS of (8)
goes to 0 as v/ — 0. Noting that ' > 0 is an arbitrary
small number, this means that for Vé > 0 there exists
Ny such that for Vn > Ny it holds that

—Pxn xn (X7 X3) — H(XT| XS
Pr{ g (X71X5) - H(X 2>2T_2y}

7’LO’(X1 |X2)2

</Oo L, [ﬂd +26
o | Y
DR B
=€+ 20, (9)

where the last equality is due to the definition of T
Hence substituting (9) into (7) we have

limsupe, <e.
n—oo

On the other hand from the construction of log M,

1
N

holds obviously. These two inequalities shows that the
first part of the theorem holds.

The second part is proved if {n,, }5°; is an e-achievable
sequence, then (4) holds.

We assume that {n,}5°; not satisfying (4), is an
e-achievable sequence. Then we shall lead a contradic-
tion. Since we assume that {n,}>2, is an e-achievable
sequence, there exists an (n, M,,, ¢,) code satisfying

lim sup <

n—oo

log M,, — nn> <0,

limsupe, <e¢,

n—oo
and

lim su i10 M, — <0 (10)
naoop NG gMp —Tn | = U.

(10) implies that for arbitrary small v > 0, there exists
Ny such that for Vn > Ny

1

log My, <1 + 7,
\/ﬁog St

holds. Substituting the above inequality into Lemma
3.2 and set a,, = e~ V™ we have

¢n > Pr {PXT,X; (XPIX5) < erw } P
> Pr{llog 1 zllogMn—&-v}
Vo Pxpixp (XT1X3) — vn
e~V
> Pr{llog ! 277n+’Y+’7}
Vvno 7 Pxnixp (X7X5)
eV
= Pr{llog 1 >77n+27}
v Pxpixp (X71X3)
—e V™, (11)

Since we assume that {n,}52; does not satisfy (4),
there exists a constant A > 0 such that

m< SO o ARG - (2)

holds for countably infinite n. Substituting (12) into
(11), it holds that

. { L 1 H(X7|X3)

€y > — log 2
Vo7 Pxpixp (XTX3) vn
7o (X0 X2)? — A+ 27} eV
N —log Pxp xp (X7 X3) — H(XT|XZ)
na(X1|X2)2
ZT+727_/\ — e VY
o(X1|X2)?
>

. —log Py xp (XT'|X3) — H(XT|XZ)
TLO'(X1|X2)2

—v/ny

A
>T——— 2 ¢ ,
2\/0’(X1|X2)2}

for countably infinite n where the last inequality is de-

rived since A > 0 is a constant, % > 27 holds for suffi-

ientl ly>0 H denote N = ——2——
ciently small v > ere, we denote 24/ (X1|X2)?

for short. Then from Assumption 3.1 for Vé > 0, we
have

€p >

L7108 Py (XTXE) — H(X|X5)
TLO'(Xl |X2)2

> /OO L exp[—dey—é—e vy
T—x V2T 2
T 2
1 y
= €+ exp |—=|dy—0—ce \/H'Y,
/TfA’VQﬂ' p[ 2] Y



for countably infinite n. Noting that A’ > 0 is a con-
stant there exists a constant « > 0 such that

T 1 y2
exp |—=|dy > a >0,
/fo V2m p{ 2} =

holds. Thus we have

en>e+a—6—e_‘/ﬁ"’,

for countably infinite n. Thus noting that § > 0 is an
arbitrarily small number and o > 0 is a constant, it
holds that

liminfe, > €.

n—oo
This means that {7, }°2; not satisfying (4), is not an e-
achievable sequence. This is a contradiction. Therefore
we deduce the second part of the theorem. O

4 Conclusion

In this study, we showed the coding theorem for the
sources with side information by using the asymptotic
normality. When there does not exist side information,
the several researchers showed coding theorems by us-
ing the asymptotic normality of self-information[5, 6,
7]. Our result can be considered as a natural extension
of these results to the case that we can use the side
information.

To show the second order source coding theorems
for Slepian-Wolf type problem and Wyner type prob-
lem are future work.

Acknowledgment
This work was supported in part by MEXT Grant-
in-Aid for Young Scientists (B) No. 21760298.

References

[1] T.M. Cover and J.A.Thomas, “Elements of infor-
mation theory,” Wiley, 1991.

[2] T.S. Han, “Information-Spectrum Methods in In-
formation Theory,” Springer, New York, 2002.

[3] T.S. Han and S. Verdu “Approximation Theory of
Output Statistics,” IEEE Trans. Information The-
ory, Vol.39, No.3, pp.752-772, 1993.

[4] Y. Steinberg and S. Verdu “Simulation of Random
Processes and Rate-Distortion Theory,” IEEE
Trans. Information Theory, Vol.42, No.1, pp.63-
86, 1996.

[5] I. Kontoyiannis, “Second-Order Noiseless Source
Coding Theorems,” IEEE Trans. Information The-
ory, vol.43, no.4, pp.1339-1341,1997.

[6] M. Hayashi “Second-Order Asymptotics in Fixed-
Length Source Coding and Intrinsic Randomness,”
IEEE Trans. Information Theory, Vol.54, No.10,
pp.4619-4637, 2008.

[7] R. Nomura, T. Matsushima and S. Hirasawa, “A
Note on the e-Overflow probability of Lossless
Codes,” IEICE Trans. Fundamentals, Vol.E90-A,
No.12, pp.2965-2970, 2007.

[8] S. Miyake and F. Kanaya, “Coding Theorems on
Correlated General Sources,” IEICE Trans. Fun-
damentals, Vol.LE78-A, No9, pp.1063-1070, 1995.

[9] D. Slepian and J.K. Wolf, “Noiseless Coding of
Correlated Information Sources,” IEEE Trans. In-
formation Theory, Vol.IT-19, No.4, pp.471-480,
1973.

[10] A.D. Wyner “On Source Coding with Side Infor-
mation at the Decoder,” IEEE Trans. Information
Theory, Vol.IT-21, No.3, pp.294-300, 1975.

[11] T. Uyematsu and K. Maeda, “Asymptotic Op-
timality for Universal Data Compression Algo-
rithm with Side Information Based on Incremental
Parsing,” IEICE Trans. Fundamentals, Vol.J85-A,
No.1, pp.95-102, 2002. (in Japanese)

[12] S. Ohta, T. Uyematsu and E. Okamoto, “Cod-
ing Theorem of Wyner’s Source Network for Gen-
eral Sources,” Proceedings of the 19th Sympo-
sium on Information Theory and Its Applica-
tions(SITA96), pp.109-112, 1996 (in Japanese).

[13] H. Cai, S.R. Kulkarni and S. Verdd, “An Algo-
rithm for Universal Lossless Compression With
Side Information,” IEEE Trans. Information The-
ory, Vol.52, No.9, pp.4008-4016 , 2006.



