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Abstract— The source coding theorem reveals the mini-
mum achievable code length under the condition that the
error probability is smaller than or equal to some small
constant. For the single source coding problem, the source
coding theorem was shown for general sources. Further-
more, there is a study to evaluate the achievable code length
more precisely for the restricted class of sources by using
the asymptotic normality. In this study, we consider the
problem that there exists a side information. This setting
is one kind of correlated sources coding problem and show
the coding theorem more precisely than the previous result
by using the asymptotic normality.
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1 Introduction
The source coding theorem is one of the most ba-

sic result in communication systems. It reveals the
minimum achievable code length under the condition
that the error probability is smaller than or equal to
ϵ (0 ≤ ϵ < 1)[1][2]. In single-user communication sys-
tems, Han et al. and Steinberg et al. shows the source
coding theorem for general sources[3][4]. The class of
general sources is quite large and their result can be ap-
plied for various sources. On the other hand, there are
several researches that shows the minimum achievable
code length more precisely for the restricted class of
sources[5, 6, 7]. These results are based on the asymp-
totic normality of self-information.

In multi-user communication system there are var-
ious types of source coding problems[1][8, 9, 10, 11, 12,
13]. The correlated source coding problem is a typi-
cal source coding problem in multi-user communication
system. In the correlated source coding problem, there
exists several problem settings according to the type
of encoder and the decoder. The Slepian-Wolf type
problem, Wyner type problem and the source coding
problem with side information are included in the class
of the correlated source coding problem.

Miyake et al. showed the source coding theorem for
Slepian-Wolf type source coding problem and Wyner
type source coding problem under the condition that
the error probability goes to 0 asymptotically [8]. Han
showed the coding theorem for Slepian-Wolf type prob-
lem in the case that we allow the small error probabil-
ity. Please note that their results are very important,
since they are valid for general correlated sources. How-
ever there was no result to show the coding theorem by
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using the asymptotic normality for correlated sources.
In this study, we consider the case that the self-

information of correlated sources has an asymptotic
normality and show the coding theorem for the sources
with side information more precisely than the previ-
ous result. The analysis is based upon the asymptotic
normality.

2 Preliminaries
2.1 Correlated Sources

Let Xn
1 and Xn

2 be alphabets of correlated sources,
where n ∈ N ≡ {1, 2, · · · }. Let

(X1,X2) = {(Xn
1 , Xn

2 )}∞n=1,

denote a general correlated sources where

(Xn
1 , Xn

2 ) = (X11, X21), (X12, X22), · · · , (Xn, X2n),

be random variables emitted from the source and xk =
xk1, xk2, · · · , xkn be a realization of random variable
Xn

k . The probability distribution of (x1,x2) is denoted
by PXn

1 Xn
2
(x1,x2). Please note that each of sources

Xk is general correlated sources. If we assume that
correlated sources is stationary memoryless correlated
sources then it holds that

PXn
1 Xn

2
(x1,x2) =

n∏
i=1

PX1X2(x1i, x2i).

2.2 Problem Settings
In this study, we consider the case that we try to

communicate x1 by using the side information x2. The
fixed-length codes for the source with side information
are characterized by a encoder ϕ

(1)
n and a decoder ψn.

The encoder is a mapping such as ϕ
(1)
n : Xn

1 → Mn,
where

Mn = {1, 2, · · · ,Mn},

denote the codes. The decoder is a mapping defined as
ψn : Mn × Xn

2 → Xn
1 . Please note that the encoder

ϕ
(1)
n does not know the sequence x2. This setting is

called separate coding.
The performance of fixed-length code is evaluated

by the error probability and the code length. The
code length is given by log Mn

1.The error probability
is given by

ϵn = Pr{Xn
1 ̸= ψn(ϕ(1)

n (Xn
1 ), Xn

2 )}.

We call the a pair of the encoder ϕ
(1)
n and the de-

coder ψn with the error probability ϵn an (n,Mn, ϵn)
1 The base of logarithm is taken by e.



code. Then we are interested that how the code length
can be short under the condition that the error proba-
bility is smaller than or equal to ϵ (0 ≤ ϵ < 1).
Definition 2.1 The rate R is called an ϵ-achievable
rate if there exists an (n,Mn, ϵn) code satisfying

lim sup
n→∞

1
n

log Mn ≤ R,

lim sup
n→∞

ϵn ≤ ϵ.

We consider the infimum of ϵ-achievable rate as follows.
Definition 2.2

R(ϵ|X1) = inf{R1|R1 is ϵ-achievable rate }.

The above quantities was not shown directly. How-
ever, for general correlated sources, Miyake et al. showed
the achievable rate region for Slepian-Wolf type prob-
lem and Wyner type problem[8] and Han showed the ϵ-
achievable rate region for Slepian-Wolf type problem[2].
Since settings in their results includes the setting de-
fined in this study, we can derive R(ϵ|X1) immediately
from their results.

2.3 Generalization of Achievability
Second order source coding theorems give us the

precise achievable code length. Kontyiannis showed
the second order fixed-to-variable source coding theo-
rem for stationary ergodic sources[5]. Hayashi showed
the second order fixed-length source coding theorem
for general sources[6]. Furthermore for an i.i.d. source
his results can be described by using the asymptotic
normality.

Their results implies that for restricted source class,
such as an stationary memoryless source, we can obtain
the achievable code length more precisely.

In this study, we shall show the second order coding
theorem for the source with side information.

The infimum of ϵ-achievable rate denotes the short-
est code length under the condition that error proba-
bility is smaller than or equal to ϵ. In this subsection
we define the achievability to evaluate the code length
more precisely. In this study, we consider the following
achievability.
Definition 2.3 A sequence {ηn}∞n=1 is called an
ϵ-achievable sequence if there exists an (n,Mn, ϵn) code
satisfying

lim sup
n→∞

(
1√
n

log Mn − ηn

)
≤ 0,

lim sup
n→∞

ϵn ≤ ϵ.

Then we are interested in the condition that {ηn}∞n=1

is the ϵ-achievable sequence.
Please note that the difference between the previ-

ous achievability condition and our achievability condi-
tion is the difference of conditions for the code length
log Mn. Actually if we use the ϵ-achievable rate, then
o(n) term in the condition is neglected. Instead, if we
use our definition, we can evaluate the condition of ϵ-
achievability more precisely.

Remark 2.1 Assuming that ηn =
√

nR for each n =
1, 2, · · · and we divide both sides by

√
n, then the con-

dition in our definition coincides with the condition in
Def. 2.1. So our achievability is a generalization of the
previous. ¤

3 Necessary and Sufficient Condition for

ϵ-Achievable Sequence

The infimum of ϵ-achievable rate is considered as
the necessary and sufficient condition for ϵ-achievable
rate. In this section we show the necessary and suf-
ficient condition that {ηn}∞n=1 is the ϵ-achievable se-
quence.

At first we show two lemmas that have important
roles in our result.

Lemma 3.1 Let Mn be an arbitrarily given positive
integer and {an}∞n=1 be a sequence of an arbitrary num-
ber satisfying ai > 0 (∀i = 1, 2, · · · ). Then, for all
n = 1, 2, · · · there exists an (n,Mn, ϵn) code that satis-
fies

ϵn ≤ Pr
{

anPXn
1 |Xn

2
(Xn

1 |Xn
2 ) ≤ 1

Mn

}
+ an. (1)

(Proof) At first, we shall define the encoder and the
decoder. We use the random coding technique.

Encoder For each xn
1 ∈ Xn

1 , we generate i ∈ Mn

randomly subject to the uniform distribution and
define ϕ

(1)
n (x1) = i.

Decoder After receiving i, the decoder ψ : Mn ×
Xn

2 → Xn
1 decodes x1 if there exists a unique x1

such that ϕ
(1)
n (x1) = i and (x1,x2) ∈ Bn where

Bn
def=

{
(x1,x2) ∈ Xn

1 ×Xn
2

∣∣∣
anPXn

1 |Xn
2
(x1|x2) >

1
Mn

}
.

If there exists no such i or more than one, the
error is occurred.

We shall evaluate the above encoder and decoder. Let
the event En as

En
def=

{
(x1,x2) ∈ Xn

1 ×Xn
2 |∃x′

1 ̸= x1,

ϕ(1)
n (x′

1) = ϕ(1)
n (x1), (x′

1,x2) ∈ Bn

}
.

Then the error probability is given by

ϵn = Pr{Xn
1 Xn

2 ∈ En ∪ (Xn
1 , Xn

2 ) /∈ Bn}
≤ Pr{Xn

1 Xn
2 ∈ En} + Pr{(Xn

1 , Xn
2 ) /∈ Bn}.(2)

We shall evaluate the first term of the right hand side



(RHS) of (2) as follows.

Pr{Xn
1 Xn

2 ∈ En}
=

∑
(x1,x2)∈Xn

1 ×Xn
2

PXn
1 Xn

2
(x1,x2)

·
∑

x′
1 ̸=x1,(x′

1,x2)∈Bn

Pr
{

ϕ(1)
n (x′

1) = ϕ(1)
n (x1)

}
=

∑
(x1,x2)∈Xn

1 ×Xn
2

PXn
1 Xn

2
(x1,x2)

·
∑

x′
1 ̸=x1,(x′

1,x2)∈Bn

1
Mn

≤
∑

(x1,x2)∈Xn
1 ×Xn

2

PXn
1 Xn

2
(x1,x2)

∑
x′

1,(x′
1,x2)∈Bn

1
Mn

,

where the second equality holds since we use the ran-
dom coding. Furthermore set Sn(x2) as follows

Sn(x2)
def= {x′

1 ∈ Xn
1 |(x′

1,x2) ∈ Bn} .

Then we have

Pr{Xn
1 Xn

2 ∈ En}

≤
∑

(x1,x2)∈Xn
1 ×Xn

2

PXn
1 Xn

2
(x1,x2)

∑
x′

1,(x′
1,x2)∈Bn

1
Mn

=
∑

(x1,x2)∈Xn
1 ×Xn

2

PXn
1 Xn

2
(x1,x2) |Sn(x2)|

1
Mn

. (3)

From the definition of Bn, for (x′
1,x2) ∈ Bn, we have

PXn
1 |Xn

2
(x′

1|x2) >
1

anMn
.

Thus we have

1 ≥
∑

x′
1∈Sn(x2)

PXn
1 |Xn

2
(x′

1|x2) >
|Sn(x2)|
anMn

.

Hence we obtain

|Sn(x2)| < anMn.

Substituting the above inequality into (3) we have

Pr{Xn
1 Xn

2 ∈ En}
≤

∑
(x1,x2)∈Xn

1 ×Xn
2

PXn
1 Xn

2
(x1,x2)an ≤ an.

Substituting the above inequality into (2), we obtain

ϵn ≤ an + Pr{(Xn
1 , Xn

2 ) /∈ Bn}

= Pr{anPXn
1 |Xn

2
(x1|x2) ≤

1
Mn

},

where the last equality is derived from the definition of
Bn. Therefore we deduce the lemma. ¤

Lemma 3.2 For any (n,Mn, ϵn) code, it holds that

ϵn ≥ Pr
{

PXn
1 |Xn

2
(Xn

1 |Xn
2 ) ≤ an

Mn

}
− an,

for all n = 1, 2, · · · , where {an}∞n=1 is a sequence of an
arbitrary number satisfying ai > 0 (∀i = 1, 2, · · · ).
(Proof) We shall define the following sets.

Cn

def=
{

(x1,x2)∈Xn
1 ×Xn

2

∣∣∣∣PXn
1 |Xn

2
(x1|x2)≤

an

Mn

}
,

Dn

def=
{

(x1,x2)∈Xn
1 ×Xn

2

∣∣∣ψn(ϕ(1)
n (x1),x2)=x1

}
,

and

Cn(x2)
def= {x1 ∈ Xn

1 |(x1,x2) ∈ Cn } ,

for each x2. Then we have

Pr
{

PXn
1 |Xn

2
(Xn

1 |Xn
2 ) ≤ an

Mn

}
=

∑
(x1,x2)∈Cn

PXn
1 Xn

2
(x1,x2)

=
∑

(x1,x2)∈Cn∩Dn

PXn
1 Xn

2
(x1,x2)

+
∑

(x1,x2)∈Cn∩Dc
n

PXn
1 Xn

2
(x1,x2)

≤
∑

(x1,x2)∈Cn∩Dn

PXn
1 Xn

2
(x1,x2)

+
∑

(x1,x2)/∈Dn

PXn
1 Xn

2
(x1,x2)

=
∑

(x1,x2)∈Cn∩Dn

PXn
1 Xn

2
(x1,x2) + ϵn

≤
∑

(x1,x2)∈Cn

PXn
1 |Xn

2
(x1|x2)PXn

2
(x2) + ϵn

=
∑

x2∈Xn
2

∑
x1∈Cn(x2)

PXn
1 |Xn

2
(x1|x2)PXn

2
(x2) + ϵn

=
∑

x2∈Xn
2

PXn
2
(x2)

∑
x1∈Cn(x2)

PXn
1 |Xn

2
(x1|x2) + ϵn.

On the other hand for ∀(x1,x2) ∈ Cn, it holds that

PXn
1 |Xn

2
(x1|x2) ≤

an

Mn
.

Thus we have

Pr
{

PXn
1 |Xn

2
(Xn

1 |Xn
2 ) ≤ an

Mn

}
≤

∑
x2∈Xn

2

PXn
2
(x2)

∑
x1∈Cn(x2)

an

Mn
+ ϵn

≤
∑

x2∈Xn
2

PXn
2
(x2) |Cn(x2)|

an

Mn
+ ϵn.



Here, noting that |Cn(x2)| ≤ Mn we obtain

Pr
{

PXn
1 |Xn

2
(Xn

1 |Xn
2 ) ≤ an

Mn

}
≤

∑
x2∈Xn

2

PXn
2
(x2)an + ϵn = an + ϵn.

Therefore we deduce the lemma. ¤
Please note that these lemmas are valid for general

correlated sources.
We assume that the following condition holds for

correlated sources.
Assumption 3.1 The conditional self-information has
an asymptotic normality, that is

lim
n→∞

Pr

− log PXn
1 |Xn

2
(Xn

1 |Xn
2 ) − H(Xn

1 |Xn
2 )√

nσ(X1|X2)
2

≤ U


=

∫ U

−∞

1√
2π

exp
[
−z2

2

]
dz,

holds where H(Xn
1 |Xn

2 ) = E[− log 1
P (Xn

1 |Xn
2 ) ] denotes

the conditional entropy of the source and σ(X1|X2)2

denotes the variance of the random variable
− log PXn

1 |Xn
2
(Xn

1 |Xn
2 ) that is,

σ(X1|X2)2
def= lim

n→∞

1
n

V ar

(
log

1
PXn

1 |Xn
2
(Xn

1 |Xn
2 )

)
.

We also assume that σ(X1|X2)2 exists and

0 < σ(X1|X2)2 < ∞,

holds. This holds for the case that |X1| < ∞ and |X2| <
∞ holds.

Please note that the asymptotic normality of con-
ditional self-information holds for the stationary mem-
oryless correlated sources.

By using the above lemmas and the asymptotic nor-
mality, we obtain the necessary and sufficient condition
for the ϵ-achievable sequence. The following theorem
shows the condition in the case that 0 < ϵ < 1 holds.
Theorem 3.1 Under Assumption 3.1, given 0 < ϵ <
1, the necessary and sufficient condition of ϵ-achievable
sequence for sources with side information is as follows

lim inf
n→∞

(
ηn − H(Xn

1 |Xn
2 )√

n

)
≥ T

√
σ(X1|X2)2, (4)

where T satisfies

ϵ =
∫ ∞

T

1√
2π

exp
[
−y2

2

]
dy.

(Proof) The proof consists of two parts. The first
part is that any {ηn}∞n=1 satisfying (4) is an ϵ-achievable
sequence and the second part is that if {ηn}∞n=1 is the
ϵ-achievable sequence, then (4) holds.

At first we shall show the first part, that is, if (4)
holds then {ηn}∞n=1 is a ϵ-achievable sequence.

From Lemma 3.1, for all n = 1, 2, · · · there exists
an (n,Mn, ϵn) code satisfying

ϵn ≤ Pr
{

anPXn
1 |Xn

2
(Xn

1 |Xn
2 ) ≤ 1

Mn

}
+ an. (5)

Then set an = e−
√

n
log n and substituting it into (5), there

exists an (n,Mn, ϵn) code satisfying

ϵn ≤ Pr
{

e−
√

n
log n PXn

1 |Xn
2
(Xn

1 |Xn
2 ) ≤ 1

Mn

}
+ e−

√
n

log n

≤ Pr

{
1√
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2 )

≥ 1√
n

log Mn

− 1
log n

}
+ e−

√
n

log n . (6)

Here, we consider {ηn}∞n=1 satisfying (4) and define

Mn = e
√

nηn .

Then (6) guarantees that, there exists an (n,Mn, ϵn)
code satisfying

ϵn ≤ Pr

{
1√
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2 )

≥ ηn − 1
log n

}
+e−

√
n

log n . (7)

On the other hand from (4) for any small ν > 0 it holds
that

ηn ≥ H(Xn
1 |Xn

2 )√
n

+ T
√

σ(X1|X2)2 − ν,

for sufficiently large n. Thus the first term of the right
hand side(RHS) of (7) is evaluated as follows.

Pr

{
1√
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2 )

≥ ηn − 1
log n

}

≤ Pr

{
1√
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2 )

≥ H(Xn
1 |Xn

2 )√
n

+T
√

σ(X1|X2)2 − ν − 1
log n

}
≤ Pr

{
−PXn

1 |Xn
2
(Xn

1 |Xn
2 ) − H(Xn

1 |Xn
2 )√

nσ(X1|X2)2

≥ T − ν√
σ(X1|X2)2

− 1√
σ(X1|X2)2 log n

}

< Pr

{
−PXn

1 |Xn
2
(Xn

1 |Xn
2 ) − H(Xn

1 |Xn
2 )√

nσ(X1|X2)2

≥ T − 2ν√
σ(X1|X2)2

}
for sufficiently large n, since

ν√
σ(X1|X2)2

>
1√

σ(X1|X2)2 log n
,



holds for sufficiently large n. Here, we denote ν′ =
ν√

σ(X1|X2)2
for simplicity. Then from Assumption 3.1

for ∀δ > 0 there exists N0 such that for ∀n > N0 it
holds that

Pr

{
−PXn

1 |Xn
2
(Xn

1 |Xn
2 ) − H(Xn

1 |Xn
2 )√

nσ(X1|X2)2
≥ T − 2ν′

}

<

∫ ∞

T−2ν′

1√
2π

exp
[
−y2

2

]
dy + δ

=
∫ ∞

T

1√
2π

exp
[
−y2

2

]
dy

+
∫ T

T−2ν′

1√
2π

exp
[
−y2

2

]
dy + δ. (8)

Please note that from the property of continuity of nor-
mal distribution, the second term of the RHS of (8)
goes to 0 as ν′ → 0. Noting that ν′ > 0 is an arbitrary
small number, this means that for ∀δ > 0 there exists
N0 such that for ∀n > N0 it holds that

Pr

{
−PXn

1 |Xn
2
(Xn

1 |Xn
2 ) − H(Xn

1 |Xn
2 )√

nσ(X1|X2)2
≥ T − 2ν

}

≤
∫ ∞

T

1√
2π

exp
[
−y2

2

]
dy + 2δ

= ϵ + 2δ, (9)

where the last equality is due to the definition of T .
Hence substituting (9) into (7) we have

lim sup
n→∞

ϵn ≤ ϵ.

On the other hand from the construction of log Mn

lim sup
n→∞

(
1√
n

log Mn − ηn

)
≤ 0,

holds obviously. These two inequalities shows that the
first part of the theorem holds.

The second part is proved if {ηn}∞n=1 is an ϵ-achievable
sequence, then (4) holds.

We assume that {ηn}∞n=1 not satisfying (4), is an
ϵ-achievable sequence. Then we shall lead a contradic-
tion. Since we assume that {ηn}∞n=1 is an ϵ-achievable
sequence, there exists an (n,Mn, ϵn) code satisfying

lim sup
n→∞

ϵn ≤ ϵ,

and

lim sup
n→∞

(
1√
n

log Mn − ηn

)
≤ 0. (10)

(10) implies that for arbitrary small γ > 0, there exists
N0 such that for ∀n > N0

1√
n

log Mn ≤ ηn + γ,

holds. Substituting the above inequality into Lemma
3.2 and set an = e−

√
nγ we have

ϵn ≥ Pr

{
PXn

1 |Xn
2
(Xn

1 |Xn
2 )≤ e−

√
nγ

Mn

}
− e−

√
nγ

≥ Pr

{
1√
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2 )

≥ 1√
n

log Mn+γ

}
−e−

√
nγ

≥ Pr

{
1√
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2 )

≥ ηn+γ+γ

}
−e−

√
nγ

= Pr

{
1√
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2 )

≥ ηn + 2γ

}
−e−

√
nγ . (11)

Since we assume that {ηn}∞n=1 does not satisfy (4),
there exists a constant λ > 0 such that

ηn ≤ H(Xn
1 |Xn

2 )√
n

+ T
√

σ(X1|X2)2 − λ, (12)

holds for countably infinite n. Substituting (12) into
(11), it holds that

ϵn > Pr

{
1√
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2 )

≥ H(Xn
1 |Xn

2 )√
n

+T
√

σ(X1|X2)2 − λ + 2γ
}
− e−

√
nγ

> Pr

{
−log PXn

1 |Xn
2
(Xn

1 |Xn
2 ) − H(Xn

1 |Xn
2 )√

nσ(X1|X2)2

≥ T +
2γ − λ√

σ(X1|X2)2

}
− e−

√
nγ

> Pr

{
−log PXn

1 |Xn
2
(Xn

1 |Xn
2 ) − H(Xn

1 |Xn
2 )√

nσ(X1|X2)2

≥ T− λ

2
√

σ(X1|X2)2

}
− e−

√
nγ ,

for countably infinite n where the last inequality is de-
rived since λ > 0 is a constant, λ

2 > 2γ holds for suffi-
ciently small γ > 0. Here, we denote λ′ = λ

2
√

σ(X1|X2)2

for short. Then from Assumption 3.1 for ∀δ > 0, we
have

ϵn > Pr

{
−log PXn

1 |Xn
2
(Xn

1 |Xn
2 ) − H(X1|X2)√

nσ(X1|X2)2
≥

T − λ′

}
− e−

√
nγ

>

∫ ∞

T−λ′

1√
2π

exp
[
−y2

2

]
dy − δ − e−

√
nγ

= ϵ +
∫ T

T−λ′

1√
2π

exp
[
−y2

2

]
dy − δ − e−

√
nγ ,



for countably infinite n. Noting that λ′ > 0 is a con-
stant there exists a constant α > 0 such that∫ T

T−λ′

1√
2π

exp
[
−y2

2

]
dy ≥ α > 0,

holds. Thus we have

ϵn > ϵ + α − δ − e−
√

nγ ,

for countably infinite n. Thus noting that δ > 0 is an
arbitrarily small number and α > 0 is a constant, it
holds that

lim inf
n→∞

ϵn > ϵ.

This means that {ηn}∞n=1 not satisfying (4), is not an ϵ-
achievable sequence. This is a contradiction. Therefore
we deduce the second part of the theorem. ¤

4 Conclusion
In this study, we showed the coding theorem for the

sources with side information by using the asymptotic
normality. When there does not exist side information,
the several researchers showed coding theorems by us-
ing the asymptotic normality of self-information[5, 6,
7]. Our result can be considered as a natural extension
of these results to the case that we can use the side
information.

To show the second order source coding theorems
for Slepian-Wolf type problem and Wyner type prob-
lem are future work.
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