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Abstract— Maximum likelihood (ML) multiuser detection
for the direct sequence code division multiple access (DS-
CDMA) channel is known to be NP-hard, i.e., its computa-
tional complexity increase exponentially with the number
of users. Since the ML multiuser detection can be regarded
as an integer quadratic programming, some optimization
algorithms have been used to tackle the problem. Conti
and Traverso have proposed an efficient algorithm to solve
integer programming based on the Grobner bases. Conti-
Traverso algorithm is originally used to solve the integer
linear programming, we can not apply the algorithm to the
multiuser detection problem in a straight-forward manner.
On the other hand, Ikegami et. al. extended the Conti-
Traverso algorithm to solve the integer linear programming
with modulo arithmetic conditions. In this paper, we trans-
form the ML multiuser detection problem into the integer
linear programming with modulo arithmetic conditions and
propose the multiuser detection algorithm based on the ex-
tended Conti-Traverso algorithm.

Keywords— Multiuser detection, Maximum Likelihood de-
tection, Integer quadratic programming, Gröbner basis

1 Introduction
Multiuser detection (MUD) for interference cancel-

lation in direct-sequence code-division multiple access
(DS-CDMA) communication systems is very important
and it have been studied deeply for a number of years
[1].

Assuming an additive white Gaussian noise channel,
Maximum-likelihood (ML) detection is optimum. ML
detector minimizes the squared Euclidean distance be-
tween the received signal and hypothesized information-
bit vector b which is constrained to the set {−1, 1}K ,
where K is the number of users. It has been shown
that this problem is, in general, NP-hard problem [1]
and therefore it is too complex to implement for prac-
tical DS-CDMA systems even for a moderate number
of users.

For certain special cases, it has been shown that ML
detection can be implemented in polynomial time [2]-
[4]. For general cases, the A∗ algorithm is used in [5],
where ML detection is restated as finding the optimal
path in a tree, and it’s computational complexity is
fewer than the brute forth search in many cases.

Since the computational complexity of ML detec-
tion is the exponential order, many low complexity sub-
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optimal detectors have been developed. ML detection
problem is considered as a binary constrained mini-
mization problem which is known as a binary quadratic
programming (BQP) in the area of optimization the-
ory. Various optimization algorithms are used to solve
the BQP approximately. The relaxation method is one
of most effective methods to solve the BQP approxi-
mately. They relax the binary constraints and operate
on continuous variables. The solution to the relaxed
problem is used to provide an approximate solution.
In [6][7], some relaxation methods has been applied to
the multiuser detection problem. To obtain a better
approximate solution for the ML detection problem,
semidefinite relaxation has been also used to the mul-
tiuser detection problem [8]-[11].

In this paper, quite different algorithm for ML de-
tection problem is proposed. The proposed algorithm
is an exact algorithm, i.e., it output the most closest
information-bit vector to the received signal. The al-
gorithm is based on the Conti-Traverso algorithm [12].
The Conti-Traverso algorithm solves an integer pro-
gramming using a Gröbner basis. The Conti-Traverso
algorithm compute a Gröbner basis for an ideal of a
polynomial ring which is defined from the constraints
and then compute the optimum solution.

Since the Conti-Traverso algorithm can be used to
solve the integer linear programming, and the ML de-
tection problem is the integer quadratic programming,
we can not apply the algorithm to the ML detection
problem in a straight-forward manner. On the other
hand, in [13] Ikegami et. al. extended the Conti-
Traverso algorithm to solve the integer linear program-
ming with modulo arithmetic conditions. In this paper,
we transform the ML detection problem into the inte-
ger linear programming with modulo arithmetic con-
ditions and apply the extended Conti-Traverso algo-
rithm to the transformed problem. The complexity of
the proposed detection algorithm is not as efficient as
other ML detection algorithms such as A∗ algorithm.
We think that the algebraic structure of the multiuser
detection problem will be found out through this re-
search.

The rest of the paper is organized as follows. In sec-
tion 2, we establish the synchronous DS-CDMA chan-
nel model and maximum likelihood multiuser detec-
tion problem. In section 3, we review some basic no-
tions about Gr”obner bases and the extended Conti-
Traverso algorithm proposed in [13]. Section 4 contains
the derivation of the proposed multiuser detection al-
gorithm.
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2 DS-CDMA Channel Model
We consider a synchronous CDMA system employ-

ing BPSK modulation. The received signal in a K-user
system is described by

r(t) =
K∑

k=1

√
ekbkgk(t) + n(t), 0 ≤ t ≤ T (1)

where ek is the signal energy, bk ∈ {−1,+1} is the value
of the information bit, n(t) is additive white Gaussian
noise (AWGN) with power spectral density N0/2, and
gk(t) is the signature waveform for user k, given by

gk(t) =
N−1∑
n=0

sk(n)p(t− nTc), 0 ≤ t ≤ T, (2)

where Tc is the chip interval, p(t) is a rectangular pulse
of duration Tc, {sk(n), 0 ≤ n ≤ N − 1} ∈ {−1,+1}N is
a sequence of pseudo random bits, and N is the number
of pseudo random bits in one symbol period T .

The correlation matrix W is the K × K matrix,
whose elements are

wkl =
∫ T

0

gk(t)gl(t)dt =
N−1∑
n=0

sk(n)sl(n). (3)

The ML detector selects the hypothesized informa-
tion bit vector b∗ = {b∗1, b∗2, · · · , b∗K} that maximized
the joint posterior distribution P (b|r(t)). Assuming
that all information sequences are equiprobable, the
ML detector minimizes the squared Euclidean distance
between the received signal and hypothesized informa-
tion bit vector [1], i.e.,

b∗ = arg
K

min
−1,+1

∫ T

0

[
r(t) −

K∑
k=1

√
akbkgk(t)

]2

dt(4)

= arg min
b∈{−1,+1}K

(
bT Qb − 2rT b

)
(5)

where r = [r1, r2, · · · , rK ]T is the vector of matched
filter outputs given by

rk =
√
ek

∫ T

0

r(t)gk(t)dt, 1 ≤ k ≤ K (6)

and Q is K ×K matrix with qkl =
√
ek
√
elwkl.

Let b̃ = (1 − 2b)/2, where 1 is an K-dimensional
vector of all ones. Then we can convert the problem
(5) to a 0-1 quadratic programming problem as

b̃∗ = arg min
b̃∈{0,1}K

b̃T Qb̃ − pT b̃ (7)

where p = R1 − r. Note that the solutions of (5)
and (7) are related by the one-to-one relationship b∗k =
(1 − 2b̃∗k)/2, where bk and bl are the k-th element of b

and b̃, respectively.

3 Gröbner basis, Conti-Traverso algo-

rithm and its extension
In [12] and [13], Conti and Traverso have been pro-

posed an algorithm to solve the integer linear program-
ming and Ikegami and Kaji have been proposed an al-
gorithm to solve the integer linear programming with
modulo arithmetic conditions, respectively. These al-
gorithms are based on the theory of Gröbner bases,
hence we review some basic notions in the following
subsection.

3.1 Gröbner basis
Let F be a field and F [X1, · · · , Xn] be the poly-

nomial ring over F in n variables X1, · · · , Xn. For
f1, · · · , fs ∈ F [X1, · · · , Xn], let 〈f1, · · · , fs〉 be the col-
lection

〈f1, · · · , fs〉 =

{
s∑

i=1

hifi : hi ∈ F [X1, · · · , Xn]

}
. (8)

Then 〈f1, · · · , fs〉 forms an ideal in F [X1, · · · , Xn] and
it is called the ideal generated by f1, · · · , fs. The set of
polynomials {f1, · · · , fs} is called a basis of the ideal I
when I = 〈f1, · · · , fs〉. According to the Hilbert’s basis
theorem, any ideal of F [X1, · · · , Xn] has a finite basis.

A monomial of X1, · · · , Xn is a product in the form
of Xα1

1 · · ·Xαn
n with αi ∈ Z+ for 1 ≤ i ≤ n, where Z+

denotes the set of nonnegative integers. We abbreviate
the above monomial as Xα, where α = (α1, · · · , αn) ∈
Zn

+ is the vector of exponents in the monomial.
A monomial order < on F [X1, · · · , Xn] is a total

order on the set of monomials in F [X1, · · · , Xn] that
satisfies following conditions:

• if Xα1 < Xα2 , then Xα1+β < Xα2+β for all
α1,α2,β ∈ Zn

+

• X0(= 1) < Xα for all α ∈ Zn
+

For a monomial order < and a nonzero polynomial
f =

∑
α cαXα ∈ F [X1, · · · , Xn] with cα ∈ F for any

α ∈ Zn
+, The leading term of f is the term which has

the largest exponent in f with respect to <. The lead-
ing term of f is denoted by LT<(f).

For an ideal I, we denote by LT<(I) the set of lead-
ing terms of elements of I and by 〈LT<(I)〉 the ideal
generated by the elements of LT<(I). A nonempty fi-
nite subset G = {g1, · · · , gt} ⊂ F [X1, · · · , Xn] is called
a Gröbner basis of the ideal I with respect to < if and
only if

〈LT<(g1), · · · ,LT<(gt)〉 = 〈LT<(I)〉 (9)

For a monomial order < and a Gröbner basis G
with respect to <, the remainder of a polynomial f ∈
F [X1, · · · , Xn] divided by every elements of G with re-
spect to < is uniquely determined according to the di-
vision algorithm in F [X1, · · · , Xn]. The remainder is
called the normal form of f by G and denote as f̄G . We
write f ≡ h mod I if f̄G = h̄G .
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3.2 Conti-Traverso algorithm
The Conti-Traverso algorithm can solve the follow-

ing minimization problem:

IPA,c(d) = min
{
cT x : Ax = d x ∈ Zn

}
, (10)

where A = [a1 a2 · · · an] ∈ Zm×n, c ∈ Rn
+ and d ∈

Zm, where R+ is the set of nonnegative real numbers.
The algorithm first define an ideal I and a monomial
order < and a monomial f that are determined by A,
c and d, respectively. Then the algorithm computes
Groöbner basis of I with respect to w and computes
the normal form of f . Then the exponent of the normal
form of f is an optimal solution of IPA,c(d).

3.3 Extended Conti-Traverso algorithm
Here we consider the following minimization prob-

lem:

IPA,c,q(d) = min
{
cT x : Ax ≡ d mod q,x ∈ Zn

q

}
,

(11)
where A = [a1 a2 · · · an] ∈ Zm×n

q , d ∈ Zm
q , c ∈ Rn

+

and Zq = {0, 1, · · · , q − 1}.
Then we consider the polynomials F [X1, · · · , Xn],

F [Y1, · · · , Ym] and F [X1, · · · , Xn, Y1, · · · , Ym]. We de-
fine the homomorphic mapping φA as

φA : F [X1, · · · , Xn] → F [Y1, · · · , Ym], (12)
Xi 7→ Y ai := Y a1i

1 · · ·Y ami
m

Let φi
A = φA(Xi) = Y a1i

1 · · ·Y ami
m for 1 ≤ i ≤ n and J

and IA be ideals defined by

J = 〈Y q
1 − 1, · · · , Y q

m − 1〉 (13)
IA =

〈
φ1

A −X1, · · · , φn
A −Xn, Y

q
1 − 1, · · · , Y q

m − 1
〉

⊂ F [X1, · · ·Xm, Y1, · · · , Yn]. (14)

Then we introduce the following definition [13]:

Definition 1
A monomial order <c on F [X1, · · · , Xn, Y1, · · · , Ym] is
adopted to an integer programming IPA,c,q(d) if it has
the following properties:

• (Elimination) Any monomial containing at least
one of Yj , 1 ≤ j ≤ m is greater than any mono-
mial containing only Xi’s

• (Compatibility with c) For any x1,x2 ∈ Zn
q with

φA(Xx1) ≡ φA(Xx2) mod J , if cT x1 < cT x2,
then Xx1 <c Xx2 .

Let ψ := Y d = Y d1
1 · · ·Y dm

m . Then the extended
Conti-Traverso algorithm proposed in [13] is described
as follows:

Algorithm 1
(Extended Conti-Traverso Algorithm [13])
1: Compute the Gröbner basis G of the ideal IA with

respect to a fixed adapted monomial order <c.
2: Compute the normal form ψ̄G

3: Return the exponent of ψ̄G

When the cost coefficient c = (c1, · · · , cn) contains
a negative value, we cannot apply the above algorithm.
The way to avoid the problem have been also indicated
in [13].

For a given matrix A ∈ Zm×n
q , consider an enlarged

matrix

A′ =
(

A O
E E

)
, (15)

where O is the m× n-zero matrix and E is the n× n-
identity matrix. The matrix A′ is called the Lawrence
Lifting of A. Let d̄ = (q − 1, · · · , q − 1) ∈ Zn

q and
d̃ = (d, d̄) ∈ Zm+n

q . We define the µ as

µ = max [{|ci| : ci < 0, i = 1, · · · , n} ∪ {0}] , (16)

and let c1 = (c1 + µ, · · · , cn + µ) ∈ Rn
+ and c2 =

(µ, µ, · · · , µ) ∈ Rn
+ and c′ = (c1, c2) ∈ R2n

+ . Then
following theorem is valid [13].

Theorem 1 [13]
Let x1,x2 ∈ Zn

q . If x = (x1,x2) ∈ Z2n
q is an op-

timal solution of IPA′,c′,q(d′) then x1 is an optimal
solution of IPA,c,q(d).

Since the problem IPA′,c′,q(d̃) contains no negative
cost coefficient and the above algorithm is applicable.

4 Multiuser detection based on the Ex-

tended Conti-Traverso algorithm
Unfortunately, ML multiuser detection problem de-

scribed in (7) is quadratic programming problem, we
can not apply the Conti-Traverso algorithm or Extended
Conti-Traverso algorithm directly. Then we transform
the problem (7) to the integer linear programming prob-
lem with modulo arithmetic condition.

4.1 Transformation of the ML detection prob-
lem

The problem (7) can be reformulated as

b̃∗ = arg min
b̃∈{0,1}K

4
K∑

k=1

rk b̃k

+
∑

(k,l)∈K

(1 − b̃k)(1 − b̃l)qk,l, (17)

where qk,l denotes the (k, l) element of Q and K =
{(k, l) : k, l = 1, · · · ,K, k < l}.

Then we define the variables

zk,l = b̃k ⊕ b̃l (k, l) ∈ K. (18)

These variable satisfy the following equations for all
(k, l) ∈ K:

b̃k + b̃l + zk,l ≡ 0 mod 2, (19)

1 − 2zk,l = (1 − 2b̃k)(1 − 2b̃l). (20)
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Substituting (20) to (17) and eliminating the constant
factor, we obtain the following problem.

minimize 2
∑K

k=1 rkxk −
∑

(k,l)∈K qk,lzk,l

subject to xk ∈ {0, 1} ∀k = 1, · · · ,K
zk,l ∈ {0, 1} ∀(k, l) ∈ K
xk + xl + zk,l ≡ 0 mod 2 ∀(k, l) ∈ K

(21)
Let n = (K2 + K)/2, m = (K2 − K)/2 and π :

{1, · · · ,m} → K be the mapping such that π(1) =
(1, 2), π(2) = (1, 3), · · · , π(m) = (K − 1,K). Then we
define the variable x ∈ Zn

2 , c ∈ Rn and A ∈ Zm×n
2 as

x = [x1, · · · , xK , z(1,2), · · · , z(K−1,K)] (22)
c = [2r1, · · · , 2rK , q(1,2), · · · , q(K−1,K)] (23)

ai,j =
{

1 if j ∈ π(i) or j = K + i
0 otherwise , (24)

where ai,j is the (i, j)-element of A. Then we can write
the problem (21) in the form of IPA,c,2(0). The cost
coefficient c does not always has only nonnegative val-
ues, hence when it has any negative value, we should
solve the problem IPA′,c′2 as described in the previous
section.

Example 1
Suppose a two-user system with signature sequences
characterized by the correlation matrix

W =
[

1 0.7
0.7 1

]
(25)

and amplitudes are e1 = 1, e2 = 1. If the output of
matched filter is r = (−1, 0.6), the problem we should
solve is described as

minimize −2x1 + 1.2x2 − 0.7x3

subject to x1, x2, x3 ∈ {0, 1}
x1 + x2 + x3 ≡ 0 mod 2

(26)

Now µ = 2 and c′ = (0, 3.2, 1.3, 2, 2, 2) and transformed
problem is

minimize 3.2x′2 + 1.3x′3 + 2x′4 + 2x′5 + 2x′6
subject to x′i ∈ {0, 1} , i = 1, · · · , 6

x′1 + x′2 + x′3 ≡ 0 mod 2
x′1 + x′4 ≡ 1 mod 2
x′2 + x′5 ≡ 1 mod 2
x′3 + x′6 ≡ 1 mod 2

(27)

We can compute the Gröbner basis using the Buch-
berger algorithm. We find the Gröbner basis consists of
9 polynomials and the normal form of Y d = Y2Y3Y4 by
the Gröbner basis turns out to be X1X3X5. The expo-
nent of the monomial is (1, 0, 1, 0, 1, 0) and the output
of the ML detector is b̃ = (1, 0) and hence b = (−1, 1).

Example 2
Suppose a three-user system with correlation matrix

W =

 1 −1/7 3/7
−1/7 1 3/7
3/7 3/7 1

 (28)

and amplitudes are e1 = 1, e2 = 1, e3 = 1. Let assume
that the output of matched filter is r = (0.5, 1.8,−2.2).
In this case, the Gröbner basis consists of 19 polyno-
mials and the normal form of Y d by the Gröbner ba-
sis turns out to be X3X5X6X7X8X10. The exponent
of the monomial is (0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0) and the
output of the ML detector is b̃ = (0, 0, 1) and hence
b = (1, 1,−1).

4.2 Discussions
Here we discuss the complexity of the ML detection

algorithm based on the proposed algorithm. The com-
plexity depends on the calculation of the Gröbner basis
and the calculation of the normal form. It is very diffi-
cult to estimate the complexity for these operations. In
general, it requires enormous amounts of time to com-
pute a Gröbner basis using the Buchberger algorithm
and it is difficult to implement the proposed algorithm
even for the moderate number of users.

As described in section 2, the ML multiuser detec-
tion problem can be formulated as the 0-1 quadratic
programming problem, and it is generally NP-hard prob-
lem. On the other hand, the ML detection can be im-
plemented in polynomial time when the off-diagonal
elements of correlation matrix are all non-positive [2]-
[4]. They transform the ML multiuser detection prob-
lem to the minimum cut problem. The minimum cut
problem can be solved by the the cycle-canceling al-
gorithm. We conjecture that there are some kind of
relations between those algorithm and proposed algo-
rithm.

5 Conclusion
In this paper, we proposed the ML multiuser detec-

tion algorithm based on the Gröbner bases. The key
idea is that the ML detection problem can be trans-
formed to the integer linear programming with mod-
ulo arithmetic conditions and it can be solved by the
extended Conti-Traverso algorithm. The complexity
of the proposed detection algorithm is not as efficient
as other ML detection algorithms such as A∗ algo-
rithm because the complexity to calculate the Gröbner
bases is very large in general. The algebraic structure
of the multiuser detection problem will be found out
through this research. It includes the relation between
the cycle-canceling algorithm and proposed algorithm
for a certain special cases of multiuser detection prob-
lem. It is the future work.
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